and the second second	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGEM	ENT AND	FECHNOLOG	Y
		DEPARTMENT OF MECHANICAL ENGINEER	ING		
(Class Test – I	Session- July to December 2023	Month	- November	
	Sem- 5 th	Subject- Solid Mechanics			· 1
Code	e -C037512(037)	Time Allowed: 2 hrs	Max	Marks: 40	
Note:	- Attempt all questio	n. Parts (a) are compulsory of each question. Solve any	two parts f	rom (b), (c) an	d (d) of
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со
		Unit – I		· · · · ·	
1.A	Analyze the stresse vessel or shell.	s working on pressure vessel and define the pressure	4	Analyze	CO3
1.B	A steel cylinder o internal pressure of (i) The thickne (ii) The increas long with c Neglect any constra E = 200 GN/m ² , poi	f 1000 mm inside diameteris to be designed for an 4.8 MN/m ² , Calculate ess if max shear stress is not to exceed 21 MN/mm ² e in volume due to working pressure, if cylinder is 7m losed ends ints of due to ends. sson's ratio=1/3	8	Applying	CO3
1.C	A built-up cylinder subjected to an im- length, diameter an efficiency of longi Respectively. $E = 200GN/m^2, m=$	shell of 300 mm diameter, 3m long and 6mm thick is ternal pressure of 2MN/m ² . Calculate the change in ad volume of the cylinder underthat pressure if the tudinal and circumferential jointsis 80%. and 50%. 3.5.	(0) O	Applying	CO3
1.D	A cylindrical shell thickness of metal a an additional 20 cr pressure exerted by induced.	90 cm long and 20 cm internal diameter having as 8 mm is filled with fluid at atmospheric pressure. If n^3 of fluid is pumped into the cylinder, find (i) the r the fluid on the cylinder and (ii) the hoop stress	8	Applying	CO3

	Unit – II			
2.A	Write the assumptions of Euler's theory for long column. Also analyse and write equivalent length for different end conditions of column.	4	Analyze	CO4
2.B	Deduce the expression for Euler crippling load for column with one end fix and other end free.	8	Applying	CO4
2.C	Derive the expression for Euler crippling load for column with both end fix.	8	Applying	CO4
2.D	A built-up beam is simply supported at ends. Compute Its length, gives that it issubjected to load of 40kN per meterlength, it is deflected by 1cm. Find safe load, if this beam is used as a corm with bothends fixed. Assume a factor ofSafety 4. Use Eular's formula. $E = 210 \text{ GN/m}^2$ $\begin{array}{c} \hline \hline \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	8	Applying	CO4

6/11/2023/5th/C+-7/5-I

	SHRI SHANKAR	ACHARYA INSTITUTE OF PROFESSIONAL MANAGEN	IENT AND	TECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEER	RING		
C	class Test – I	Session- July – Dec 2023	Mont	h- November	a de ann an S
	Sem- 5 th	Subject- Internal Combustion Engine	الم العالي المحمي المالي المعادية المحمي المالي		
Code	e – C037511(037)	Time Allowed: 2 hrs	Max	x Marks: 40	H = 400, 1
Note: -	1. Students are Req 2. In Unit I & II, Q	uired to focus on question and marks columns only. uestion A is compulsory and attempt any two from B, C & D).		
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО
		Unit – I			
1.A	What is external	combustion engine?	4	Remembering	1
1.B	Write the compa	rison between four stroke S.I & C.I engine.	8	Understanding	1
1.C	What are the rea cycles? Draw the engine.	sons for deviation of actual cycles from air standard e actual valve timing diagram for four stroke C.I	8	Understanding	1
1.D	Explain reasons	of ignition and injection advance.	8	Understanding	1

ſ		Unit – II			
	2.A	Define cetane number?	4	Understanding	2
è	2.B	With the help of pressure crank-angle diagram discuss the various stages of combustion in C.I engines.	8	Understanding	2
	2.C	Analyze the phenomenon of knock in C.I engine with the help of neat sketch.	8	Analyzing	2
	2.D	What are the factors influencing the delay period?	8	Understanding	2

	SHRI SHANKARACH	ARYA INSTITUTE OF PROFESSIONAL MANAGEM	ENT AND T	ECHNOLOGY	
		DEPARTMENT OF MECHANICAL ENGINEER	ING		
C	lass Test – I	Session- 2023-24	Month	- November	
	Sem- 5 th	Subject- Fluid Machines	ระหว่างส่ว	ANY STADA	6 X
Code	:- C037512(037)	Time Allowed: 2hr.	Max	Marks: 40	
Note: - 2. Solve	1.first Question (A) from any two from B,C,D o	om both unit are compulsory. of each unit.			
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СО
		Unit – I			
1.A	Explain Boundary	layer separation and its Method of preventation.	4	Remembering	1
1.B	Derive an express layer generation in	ion of wall shear on Flat plate due to boundary n terms of Momentum Thickness.	8	Understanding	1
1.C	Explain Energy t Thickness.	hickness and derive an expression for Energy	8	Understanding	1
1.D	A kite weighing O is maintained in a attached to the k this position the v respectively. Find string. Take the d	8 kgf (7.848 N) has an effective area of 0.8 m ² . In air at an angle of 10° to the horizontal. The string the makes an angle of 45° to the horizontal and a value of co-efficient of drag and lift are 0.6 and 0.8 the speed of the wind and the tension in the ensity of air as 1.25 kg/m ³ .	8	Applying	1

	Unit – II			
2.A	Explain impulse moment principle.	4	Remembering	2
2.B	For the velocity profile for laminar boundary layer flows given as $\frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^{2}$ Find an expression for boundary layer thickness(δ), shear stress (τ_{0}), coefficient of drag C_{p} and drag force in terms of Reynolds no.	8	Understanding	1
2.C	A man weighing 981 N descends to the ground from an aeroplane with the help of a parachute against the resistance of air. The shape of the parachute is hemispherical of 2 m diameter. Find the velocity of the parachute with which it comes down. Assume Cd = 0.5 and p for air = 0.00125 gm/cc and v = 0.015 stoke	8	Applying	1

2.D	Air is flowir length of th layer exists distance fro exists. Find velocity pro	ng over a ne plate is up to a m the lea the maxir file is give	smooth plate with a velocity of 10 m/s. The s 1.2 m and width 0.8 m. If laminar boundary a value of $R_e = 2 \times 10^5$, find the maximum ading edge upto which laminar boundary layer num thickness of laminar boundary layer if the en by $\frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$ Applying	
	TA 2596 V REGIÓ MARINES	1.53.23	eachiseac)	
			Explain Coundary Everycoordion and its Method of proventation.	
	an a		Profes an expression of wall shear on Pat plate out to traundary byer secentilize it serves of Normenium Phickness	6.1
	gala satural		Explain Energy Lightners and berive an expression for Energy Thickness	
	Kurtela y		A life weighing 0.8 kg (7.846 N) has an inscremented of a set in b maintained to air at an angle of 10° to the bounded the more ettached to the kits makes an angle of 45° to the boundatend at the position the value of coverficient of drag abold R we 0.0 and 0.0 but the position the value of coverficient of drag abold R we do not be the bound of the speed of the word and the sector of the bound of the bound of the speed of the word and the sector of the bound of the bound of the speed of the word and the sector of the bound of the bound of the speed of the word and the sector of the bound of the sector of the bound of the sector of the bound of the bound of the speed of the word and the sector of the bound of the bound of the sector of the bound of the sector of the bound of the bound of the bound of the bound of the sector of the bound of the	d
	ganderstaak		splain in pulse nonzant principle.	
			or the value by particle for family at bound at layer from pixels as $\frac{3}{2} = 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} - 1 = 1$	
	Standards-W		nd an expression for boundary laver higkness(6) choar mess an fissa (4)	
			Leting (4) and drain former in terms of Reynolds no main weighing 631 N despends to the granic frace an aerooland Altribe help of a participite agricult the escalation of the The shape	

+ + 0.00125 gm/cc and v= 0.015 ctore ...

0.11.9

07/11/23/5-I

1-	SHRI SHAN	KAR	ACH	ARYA	INS	TITU	JTE	OF PROF	ESSIONA	L MANAGEMI	ENT AND	TECHNOLOGY	
				DEP	ART	MEN	VT O	F MECH	IANICAL	. ENGINEERI	NG		
	Class Test –	I				Ses	sion-	July -De	c 2023		М	onth- Nov	
	Sem- 5 th					Sub	ject-	Operati	on Resear	ch			Υ. ·
Code	e – C037531	(037)			Tim	e Al	lowed: 2	hrs	^{n a} dgen w wedd ^a r	Max	x Marks: 40	
Note:	- Question (A) is (Comp	ulsor	y. Atl	temp	t any	y One que	estion fror	m part B and C,	which ca	rries 16 marks.	
Q. No	Students ar	e Req	uired	to foc	us on	ques Que	stion	and mark	s columns	only.	Marks	Levels of Bloom's taxonomy	со
								Secti	on -I				
1.A	Find the ini correspondi	tial baing co	asic fe st. 4 10	To To 6	solut 8 5	ion b	y Nor A 2 3 3	rth-west co vailable 0	orner rule a	nd also find the	4	Apply	CO2
	Demand	7 2 40	11 1 6	20 9 8	40	3	3 12 6 13 5	5					
1.B	Find the op cells conta Method.	bimur in the F_1 F_2 F_3 F_4 F_4	m solu e tran <i>W</i> ₁ 7 8 6 5 30	W ₂ 6 5 8 7 30	o the tion o <i>W₃</i> 4 6 9 7 7 15	follo cost i 7 6 8 20	wing in ru W_s 9 8 5 6 5 5	transporta pees. Solv Available 40 30 20 10 100 (Tot	al)	em in which the el Approximate	16	Apply	CO2
1.C	Solve the f optimum so O1 O2 O3 Demand	ollow olution D1 2 10 7 4	ing Tr n.	D2 2 8 6 3	rtatior	D3 2 5 6 4	olem	(MODI M D4 1 4 8 4	Supply 3 7 5	obtained the	16	Analyze	CO2

				S	ection -II			
2.A	Write the sco	pe of operation	on research.			4	Remember	CO1
	Solve the foll	owing assigr	ment Probler	n	a de la companya de la company			
	18	26	17	11				
n , Kaloo	13	28	14	26		16	Apply	CO2
2.B	38	19	18	15		10	rippij	
	19	26	24	10				
8 A.	2					n an an teach		
	Solve the fol	lowing assig	nment Proble	m			an e	2
	5	7	11	6				
	8	5	9	6				
2.C	4	7	10	7		16	Apply	CO2
	10	4	8	3	-	3 2	e a serie en el el Ademinada	

07/11/23/5-71

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY

		DEPARTMENT OF MECHANICAL ENG	INEER	UNG		
C	Class Test: I	Session: July-December, 2023	N	Aonth: No	ovember, 202	3
S	emester 5th	Subject: Dynamics of Machines				
Code	e: C037514(037)	Time Allowed: 2 Hours		Max N	Aarks: 40	a maine
Note: attemp Ignore	- Part A of Quest ot any two parts. e the columns of L	ions 1 and 2 is compulsory, from other part evel of Bloom's taxonomy and CO.	ts B,C	and D of	Questions 1	and 2,
Q. No		Questions		Marks	Levels of Bloom's taxonomy	СО
		Question – 1				
1.A	Explain the word diagram	rking of a Centrifugal Governor with sui	itable	4	Understand	1
1.B	A Porter govern offset by 3cm fr fly masses each o In the configur governor axis ar friction between and lower speed when angles ma	or with links 15cm long has a line of pivot p om the vertical axis of governor. There are equal to 1.75 kg and central sleeve equal to ration when angles of inclination of link $= 30^{\circ}$, governor sleeve starts lifting at 300rp sleeve and spindle is constant, calculate h l of operation of governor in the configur de by links are 45° each.	ooints e two 25kg. ks to om. If igher ration	8	Apply	1
1.C	In a spring load 5kg and lift of s to float is 240rp 110mm. The m range of speed, roller arms are between center spindle is 140m account obliguit	ed governor of Hartnell type, mass of each l sleeve is 50mm. Speed at which governor h om, and at this speed the radius of ball p ean working speed of governor is 20 time when friction is neglected. If lengths of ba 120mm and 100mm respectively, and if dis of pivot of bell crank lever and axis of gov m, find initial compression of spring, takin ty of arms.	ball is begins ath is es the ll and stance ernor g into	8	Apply	1
1.D	In a Porter Go and intersect of central load is 2 are inclined at What is the fore lowest position the highest po- governor?	vernor, the arms and links are each 25cm on the main axis. Each ball weighs 4.5kg 25kg. Sleeve is in the lowest position when 30^0 to the vertical. The lift of the sleeve is ce of friction at the sleeve if speed at ascent is equal to the speed at beginning of descent sition: What is then the range of spe	a long g and arms 5 5cm. from from ed of	8	Apply	1

	Question – 2			
2.A	Explain the condition for static and dynamic balancing of rotating masses	4	Remember	2
2.B	(i) Define Sensitiveness of governor (ii) Define Stability of governors (iii) What is isochronous governor? (iv) Explain Hunting in Governors	8	Understand	1
2.C	Following particulars refer to a Proell governor with open arms: Length of all arms=200mm, distance of pivot of arms from axis of rotation=40mm, length of extension of lower arms to which each ball is attached=100mm, mass of each ball=6kg, mass of central load=150kg. If radius of rotation of balls is 180mm when arms are inclined at an angle of 40° to the axis of rotation, find equilibrium speed.	8	Apply	1
2.D	Analyze the need of different types of centrifugal governors	8	Analyze	1

....

08/11/23/5-1